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Figure 1: Four pairs of events with different relations.
Stars represent prototypes and circles represent events.
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two common limitations:

(1) such margin-based approaches struggle to capture the
essential differences between events with different semantics,

as they only consider one positive and one negative per
anchor.

(2) Randomly sampled negative samples may contain samples
semantically related to the anchor, but are undesirably
pushed apart in embedding space. This problem arises be-

cause these instance-wise contrastive learning approaches
treat randomly selected events as negative samples,
regardless of their semantic relevance.
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Figure 2: Architecture of the proposed framework, where the left part is the Weakly Supervised
Contrastive Learning method and the right part is the Prototype-based Clustering method.
Given an input event x;, we obtain three augmented representations z;, z,, and z,, of the same event x; us-
ing the BERT model with different dropout masks. Using the same approach, we obtain the representation set
{zk }reari) of in-batch negatives and the representation z,, of its co-occurrence event.
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Figure 2: Architecture of the proposed framework, where the left part is the Weakly Supervised
Contrastive Learning method and the right part is the Prototype-based Clustering method.
Given an input event x;, we obtain three augmented representations z;, z,, and z,, of the same event x; us-
ing the BERT model with different dropout masks. Using the same approach, we obtain the representation set
{zk}re A(4) of in-batch negatives and the representation z,, of its co-occurrence event. B fg(g’:i, 4‘51), z:‘ = fg(;]:z-’ qﬁz)’ (4)

9(zi, 27) + Lreni) 9(2ir 2k)
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input event, are set as £,, = €4, = ﬁl—_l’ where

Figure 2: Architecture of the proposed framework, where the left part is the Weakly Supervised
Contrastive Learning method and the right part is the Prototype-based Clustering method.
Given an input event x;, we obtain three augmented representations z;, z,, and z,, of the same event x; us-
ing the BERT model with different dropout masks. Using the same approach, we obtain the representation set
{2k }reari) of in-batch negatives and the representation z,, of its co-occurrence event.

| A(#)| is its cardinality. To obtain the weight &,
for the augmented representation z,, of the co-
occurring event, we create a co—occurrence ma-
trix, V' with each entry corresponding to the co-
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Figure 2: Architecture of the proposed framework, where the left part is the Weakly Supervised

Contrastive Learning method and the right part is the Prototype-based Clustering method. Loverall = L1 + JB’CCP +YLmim, 9)

Given an input event x;, we obtain three augmented representations z;, z,, and z,, of the same event x; us-

ing the BERT model with different dropout masks. Using the same approach, we obtain the representation set representations of the input event. Lastly, we in-

{2k }renri) of in-batch negatives and the representation z,, of its co-occurrence event. troduce the masked language modeling (MLM) ob-
jective (Devlin et al., 2019) as an auxiliary loss to

avoid forgetting of token-level knowledge.
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Model Hard similarity (Accuracy %)  Transitive sentence

Original Extended similarity ()
Event-comp (Weber et al., 2018)* 33.9 18.7 0.57
Predicate Tensor (Weber et al., 2018)* 41.0 25.6 0.63
Role-factor Tensor (Weber et al., 201 8)* 43.5 20.7 0.64

" KGEB (Ding et al., 2016)* 326 498 0.61
NTN-IntSent (Ding et al., 2019)* 77.4 62.8 0.74

" SAM-Net (Lvetal,2019* 513 452~ T 0.59
FEEL (Lee and Goldwasser, 2018)* 58.7 50.7 0.67
UniFA-S (Zheng et al., 2020)* 78.3 64.1 0.75

~Ssweec 809 7210 0.82

Table 1: Evaluation performance on the similarity tasks. Best results are bold. *: results reported in the original
papers.
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Hard similarity (Accuracy %)  Transitive sentence

Dadel Original _ Extended similarity (o)
SWCC 80.9 72.1 0.82
w/o Prototype-based Clustering  77.4 (-3.5) 67.4 (-4.7) 0.77 (-0.05)
w/o Weakly Supervised CL 75.7 (-5.2) 65.1 (-7.0) 0.78 (-0.04)
w/o MLM 77.4 (-3.5) 704 (-1.7) 0.80 (-0.02)
" BERT (InfoNCE) .1 634 075
BERT (Margin) 43.5 51.4 0.67

Table 2: Ablation study for several methods evaluated on the similarity tasks.
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Model Accuracy (%)
Random 20.00
PPMI* 30.52
BiGram* 29.67
Word2Vec* 37.39
- BERT (Margin) 3650
BERT (InfoNCE) 39.23
SWCC 44.50

Table 3: Evaluation performance on the MCNC task.
Best results are bold. *: results reported in the previous
work (Lee and Goldwasser, 2019).
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Figure 3: Impact of # of Prototypes
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Figure 4: 2D visualizations of the event representa-
tion spaces learned by BERT (InfoNCE) (left) and
SWCC (right), respectively. Each event is denoted by a
color indicating a prototype.

Prototypel Prototype2
loans be sell in market  president asked senate
earnings be reduced he deal with congress
company cut costs senate reject it
earnings be flat council gave approval
banks earn fees council rejected bill

Table 4: Example events of two different prototypes.
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SWCC Hard similarity (Acc. %) Transitive sentence SWCC Hard similarity (Acc. %)  Transitive sentence
Original Extended similarity (p) Original Extended similarity (p)
with Temperature ME:I 1:16!\«11 765 70.9 0.80
r =02 &0.0 71.0 0.80 ~=0.5 79.1 71.1 0.81
r=10.3 50.9 71.3 .52 ~=1.0 80.9 721 0.82
T=10.5 7.4 687 0.78 ¥ =1.5 80.9 L9 0.81
7= 007 722 50.5 0.75 v =2.0 80.9 72.1 0.80
r=1.0 48.7 229 0.67

Table 6: Impact of the MLM objective with different .
Table 5: Impact of Temperature (7).
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Prototypel Prototype2 Prototype3
SWee Hard similarity (Acc. %)  Transitive sentence loans be sell in market president asked senate he be known as director
Mgl Bxpemed ity () earnings be reduced he deal with congress Wright be president of NBC
with L0 company cut costs senate reject it Cook be chairman of ARCO
A =0.01 78.3 716 0.80 earnings be flat council gave approval Bernardo be manager for Chamber
g 2 g:tl'ﬁ ;g:g :‘;;? ggg banks earn fees council rejected bill Philbin be manager of Board
3 =0.3 809 713 0.82
8—05 30.9 71 0.80 Prototyped Prototypes Prototype6
g - ?g gg'z ;g? ggg he be encouraged by things  kind is essential Dorsey said to James
— - : : I be content it be approach to life Gephardt said to Richard
. they be motivated by part we respect desire Pherson said to Kathy
Table 7: Impact of the prototype-based clustering ob- they be meaningful thing be do for ourselves  Stone said to Professor
jective with different 3. he be ideal it be goal of people Stiles said to Thomas

Table 8: Example events of different prototypes.
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